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Siderophores, iron-scavenging small molecules, are fundamental
to bacterial nutrient metal acquisition and enable pathogens to
overcome challenges imposed by nutritional immunity. Multimodal
imaging mass spectrometry allows visualization of host−pathogen
iron competition, by mapping siderophores within infected tissue.
We have observed heterogeneous distributions of Staphylococcus
aureus siderophores across infectious foci, challenging the para-
digm that the vertebrate host is a uniformly iron-depleted environ-
ment to invading microbes.
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Metals are required by organisms to carry out metabolic
processes (1). During infection, host metalloproteins se-

quester nutrient metals to prevent microbial colonization, a
process termed nutritional immunity (2, 3). Bacteria have evolved
sophisticated metal acquisition strategies, including the use of
siderophores (4, 5). Siderophores are secondary metabolites
(<1 kDa) characterized by a high binding affinity for iron (Fe)
(dissociation constant [Kd] > 10−30 M) (5, 6). Staphylococcus
aureus is an opportunistic pathogen that utilizes siderophores
for Fe acquisition, and siderophore production is required for
maximum virulence (5, 7).
One hallmark of S. aureus infection is the formation of tissue

abscesses (8). Abscess architecture consists of staphylococcal
abscess communities (SACs) segregated from host tissue by
layers of necrotic and healthy innate immune cells (Fig. 1A) (9).
In Fe-limiting environments, transcriptional repression of the
S. aureus ferric uptake regulator (Fur) regulon is ceased, and bac-
teria increase expression of Fe acquisition machinery (5). Known
mechanisms of staphylococcal Fe acquisition include heme up-
take, inorganic Fe transport, and secretion of the siderophores
staphyloferrin A (SA) and staphyloferrin B (SB) (10, 11).
Emerging literature suggests that abscesses exhibit molecular
heterogeneity, and, therefore, SACs elaborate differential gene
expression, questioning the spatial and temporal importance of
siderophores (12). However, the distribution of bacterial side-
rophores within vertebrate tissue has not been visualized. We
sought to revisit the paradigm that bacteria are uniformly Fe-
starved during vertebrate colonization, by mapping siderophore
distributions in infected tissues using high-performance matrix-
assisted laser desorption/ionization Fourier transform ion cy-
clotron resonance imaging mass spectrometry (MALDI FT-ICR
IMS) (2, 5, 12–19).
Mice were infected with wild-type S. aureus, and tissue was

harvested 7 d post infection (DPI) and frozen on dry ice (20).
Tissues were sectioned serially for hematoxylin/eosin (H&E)
staining, MALDI IMS, and 56Fe analysis using laser ablation—
inductively coupled plasma (LA-ICP) IMS (Fig. 1 A–D). Using
MALDI IMS, ions corresponding to S. aureus siderophores SA
[M-H]− at m/z 479.1155 (mass accuracy: 0.01 parts per million

[ppm] error) and SB [M-H]− at m/z 447.1369 (mass accuracy:
0.09 ppm error) were observed within tissue (Fig. 1 B and C).
Tentative molecular identifications are based on accurate mass
measurements. The SA molecular assignment was validated by
MALDI IMS of mice infected with a S. aureus mutant genetically
inactivated for SA production (Δsfa) (21). Methods, supplemental
information, and raw data can be found at https://doi.org/10.6084/
m9.figshare.9617633.v4.
Both siderophores localize to infection sites and expand be-

yond the perimeter of the SACs, highlighting the metabolic ef-
fort of S. aureus to acquire Fe (Fig. 1 A–C). Differences in
siderophore production can be observed across abscesses. Com-
paring the 2 siderophore distributions, SA has increased preva-
lence at most infection sites. However, some foci show higher
relative abundances of SB, suggesting differential Fe starvation at
these sites. Notably, little to no siderophore is detected within
some abscesses. Attempts to detect ferric SA and ferric SB were
unsuccessful. It is possible that the complex is not stable due to the
high basicity of the MALDI matrix or does not survive the MALDI
process. Alternatively, but less likely, ferric SA and ferric SB are
present but at low abundance and not detectable. Fe is largely
excluded from infection sites (Fig. 1D). However, some pixels
show colocalization of Fe to SACs (Fig. 1D, arrows), presumably
highlighting successful acquisition of the metal.
To further investigate host−pathogen Fe competition, heart,

liver, and kidney lesions were compared using a multimodal
approach integrating IMS, H&E staining, and fluorescence mi-
croscopy. Mice were infected with S. aureus PisdAgfp, where green
fluorescent protein (GFP) expression is driven by the Fur-
regulated isdA promoter (12). After 10 DPI, tissues presented
with abscesses (Fig. 2). Fluorescence micrographs of GFP ex-
pression allow for a MALDI IMS-compatible technique to vi-
sualize SAC responses to host Fe sequestration (Fig. 2). Fig. 2
shows siderophores colocalizing with GFP expression. Compar-
ing H&E stains to Fe distributions, some SACs colocalize with
Fe, while others do not. This observation supports nutritional
heterogeneity of SACs and suggests differential molecular re-
sponses. Siderophores are produced by S. aureus across necrotic
abscesses in all tissues examined. In the heart abscess, SA ex-
tends beyond the abscess, highlighting SA diffusion (Fig. 2B).
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Siderophore distributions localize to GFP expression. Fe distributions
within the liver and kidney lesions (Fig. 2 A and C) localize to GFP
absence and lessened siderophore signals. These data highlight
differential siderophore production across abscesses from liver,
heart, and kidney tissues.
These results provide insight into staphylococcal metal ac-

quisition during infection and emphasize the capabilities of IMS
to investigate host−microbe interactions. While it is accepted
that siderophores play a role in pathogenesis, it is less clear why
bacteria produce multiple distinct siderophores. In addition to
Fe, glucose represses SA production, and heme affects SB pro-
duction (7, 22, 23). Furthermore, SA and SB differentially im-
pact infection outcomes in murine models (5, 7, 21, 22). These
results suggest a niche-specific role for each siderophore, rather
than functional redundancy. Differential distributions of these
siderophores may be explained by molecular heterogeneity within
the abscess. Use of spatial molecular technologies such as MALDI
IMS reveals siderophore distributions in tissue, and, when com-
bined with multimodality integration, enables an unprecedented
view of the struggle for metal between host and pathogen. The
ability to image bacterial metabolites within tissue has the po-
tential to be broadly applicable to infection biology, microbiome
studies, and clinical microbiology.

Fig. 1. MALDI IMS reveals siderophores SA and SB within the infectious
environment. (A) H&E stained abscesses. A zoom shows abscess morphology
containing SACs (arrows). (B) MALDI FT-ICR IMS reveals SA colocalizing with
infection sites. (C) SB is more closely localized to SACs than SA. (D) Fe dis-
tributions colocalize with select SACs (arrows). (E) A spectral zoom shows a
signal corresponding to SA at m/z 479.1155, 0.01 ppm mass error, and the
chemical structure of SA, [M-H]−. (F) A spectral zoom shows a signal corre-
sponding to SB at m/z 447.1369, 0.09 ppm mass error, and the chemical
structure of SB, [M-H]−.

Fig. 2. Multimodal imaging of 10-DPI S. aureus PisdAgfp infection characterizes
utilization of SA and SB across tissue types. (A) Siderophore distributions localize to
regions of staphylococcal Fe starvation (blue arrows). Fe distributions colocalize
to areas that lack GFP signal in the fluorescent micrograph (white arrows). (B)
Siderophore distributions in the heart expand outside of the abscess. (C) Hetero-
geneity in siderophore and Fe distributions as well as Fe starvation can be observed
from zooms of a single kidney abscess, similar to distributions within the liver.
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